Math 113 (Calculus II)
 Exam 2

RED KEY
Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. Responses written on your exam will be ignored.

1. Evaluate $\int_{\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{2}}} \frac{1}{x^{2} \sqrt{x^{2}-1 / 4}} d x$.
a) $1-\sqrt{3}$
b) $2-2 \sqrt{3}$
c) $-1+\sqrt{3}$
d) $-2+2 \sqrt{2}$
e) $1-\sqrt{2}$
f) $1-2 \sqrt{2}$

Solution: The answer is (d)
2. What is the value of $\int_{0}^{1} \frac{1}{x^{2}-5 x+6} d x$?
a) $\ln 3$
b) $\ln 2-\ln 3$
c) $\ln 3-2 \ln 2$
d) $\ln 2$
e) $2 \ln 2-\ln 3$
f) none of the above

Solution: The answer is (e)
3. Find $\int_{0}^{\sqrt{2}} x \sqrt{4-x^{4}} d x$.
a) $\sin ^{-1}(\sqrt{2})$
b) $\pi / 8$
c) $\pi / 4$
d) $\pi / 2$
e) π
f) 2π

Solution: The answer is (c)
4. Suppose $f(x), 0 \leq x \leq 1$, is four times differentiable and satisfies $\left|f^{(4)}(x)\right| \leq 90$ for $0 \leq x \leq 1$. Then the error E_{S} of Simpson's Rule $S_{2 n}$ for the approximation of $\int_{0}^{1} f(x) d x$ satisfies
a) $\left|E_{S}\right| \leq 1 / 2 n^{4}$,
b) $\left|E_{S}\right| \leq 1 / 2 n^{2}$,
c) $\left|E_{S}\right| \leq 15 / 2 n^{4}$,
d) $\left|E_{S}\right| \leq 15 / 2 n^{2}$,
e) $\left|E_{S}\right| \leq 15 / 4 n^{4}$,
f) $\left|E_{S}\right| \leq 15 / 4 n^{2}$.

Solution: The answer is (a)
5. Which of the following three improper integrals are convergent?

$$
\text { I } \int_{2}^{\infty} \frac{x+1}{\sqrt{x^{4}-x}} d x \quad \text { II } \int_{0}^{\infty} \frac{\arctan (x)}{2+e^{x}} d x \quad \text { III } \int_{2}^{\infty} \frac{2+e^{-x}}{x} d x
$$

a) none of them
b) I only
c) II only
d) III only
e) I and II only
f) I and III only
g) II and III only
h) all of them

Solution: The answer is (c)
6. Find the arc length of the curve $y=\ln (\cos x), 0 \leq x \leq \pi / 3$.
a) 0
b) $\ln (2+\sqrt{3})$
c) $\ln (\pi / 3)$
d) $\sqrt{\pi / 3}$
e) $1 / 2$
f) $e^{\pi / 3}$

Solution: The answer is (b)
7. Find the centroid of the region between the curve $y=\sin (5 x)$ and the x-axis for $0 \leq x \leq \pi / 5$.
a) $\left(\frac{\pi}{10}, \frac{\pi}{8}\right)$
b) $\left(\frac{\pi}{10}, \pi\right)$
c) $\left(\pi, \frac{\pi}{8}\right)$
d) $\left(-\frac{\pi}{10}, \frac{\pi}{8}\right)$
e) $\left(-\frac{1}{10}, \frac{1}{8}\right)$
f) none of the above

Solution: The answer is (a)

Part II: In the following problems, show all work, and simplify your results.
8. (8 points) Evaluate $\int \frac{\sqrt{x^{2}-1}}{x} d x$.

Solution: Let $x=\sec \theta$, with $d x=\sec \theta \tan \theta d \theta$. Then,

$$
\begin{gathered}
\int \frac{\sqrt{x^{2}-1}}{x} d x=\int \frac{\sqrt{\sec ^{2} \theta-1}}{\sec \theta} \sec \theta \tan \theta d \theta=\int \tan ^{2} \theta d \theta \\
=\int \sec ^{2} \theta-1 d \theta=\tan \theta-\theta+C
\end{gathered}
$$

Since $x=\sec \theta$, it is easy to see that $\tan \theta=\sqrt{x^{2}-1}$. Thus, the integral is

$$
\sqrt{x^{2}-1}+\sec ^{-1}(x)+C
$$

9. (10 points) Find $\int \frac{x^{4}+1}{x^{3}+x} d x$.

Solution: First, divide:

$$
\left.x^{3}+x\right) \begin{gathered}
\\
\frac{x}{x^{4}}+1 \\
-x^{4}-x^{2} \\
-x^{2}
\end{gathered}
$$

Hence,

$$
\frac{x^{4}+1}{x^{3}+x}=x+\frac{1-x^{2}}{x^{3}+x}
$$

By partial fractions,

$$
\frac{1-x^{2}}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

or

$$
1-x^{2}=A\left(x^{2}+1\right)+(B x+C) x
$$

If $x=0$, we see that $A=1$. If $x=1$, then $2 A+B+C=0$, or $B+C=-2$. If $x=-1$, we see that $2 A+B-C=0$, or $B-C=-2$. Thus, $B=-2$ and $C=0$. Thus,

$$
\int \frac{x^{4}+1}{x^{3}+x} d x=\int\left(x+\frac{1}{x}-\frac{2 x}{x^{2}+1}\right) d x=\frac{x^{2}}{2}+\ln |x|-\ln \left(x^{2}+1\right)+C .
$$

10. (10 points) Find $\int \frac{e^{x}+1}{e^{x}-1} d x$. [Hint: try a substitution.]

Solution: Let $u=e^{x}$. Then, $d u=e^{x} d x$, or $d u=u d x$. Thus, $d u / u=d x$.

$$
\int \frac{e^{x}+1}{e^{x}-1} d x=\int \frac{u+1}{u-1} \frac{d u}{u}
$$

By partial fractions,

$$
\frac{u+1}{u(u-1)}=\frac{A}{u}+\frac{B}{u-1},
$$

or

$$
u+1=A(u-1)+B u
$$

If $u=0$ we see that $A=-1$. If $u=1$, then $B=2$. So,

$$
\begin{gathered}
\int \frac{u+1}{u-1} \frac{d u}{u}=\int\left(2 \frac{1}{u-1}-\frac{1}{u}\right) d u=2 \ln |u-1|-\ln |u|+C \\
=2 \ln \left|e^{x}-1\right|-x+C
\end{gathered}
$$

11. (10 points) Use the trapezoidal rule T_{n} with $n=3$ to estimate the value of

$$
\int_{0}^{3}\left(x^{3}-x^{2}+x-1\right) d x
$$

Solution: If $f(x)=x^{3}-x^{2}+x-1$, then since $\Delta x=1$, The trapezoid rule becomes

$$
\frac{1}{2}(f(0)+2 f(1)+2 f(2)+f(3))=\frac{1}{2}(-1+2 \cdot 0+2 \cdot 5+20)=\frac{29}{2} .
$$

12. (7 points) Show that $e^{x+y}=e^{x} e^{y}$ for all real numbers x, y. Hint: Use the fact that \ln is a one-to-one function.

Solution:

$$
\ln \left(e^{x} e^{y}\right)=\ln \left(e^{x}\right)+\ln \left(e^{y}\right)=x+y=\ln \left(e^{x+y}\right)
$$

Since \ln is a 1-1 function,

$$
e^{x} e^{y}=e^{x+y}
$$

13. (10 points) Find the area of the surface obtained by rotating the curve $x=1+2 y^{2}, 1 \leq y \leq 2$, about the x-axis.
Solution: Note $\frac{d x}{d y}=4 y$, so

$$
V=\int_{1}^{2} 2 \pi y \sqrt{1+16 y^{2}} d y
$$

By letting $u=1+16 y^{2}, d u=32 y d y$, and the above integral becomes

$$
\frac{\pi}{16} \int_{17}^{65} u^{1 / 2} d u=\left.\frac{\pi}{16} \cdot \frac{2}{3} u^{3 / 2}\right|_{17} ^{65}=\frac{\pi}{24}\left(65^{3 / 2}-17^{3 / 2}\right)
$$

14. (10 points) A 12 meter high vertical dam in the shape of a rectangle has an underwater semicircular gate as shown in the figure. Find the hydrostatic force against the gate. (Assume that the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and that the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.)

Solution: If we set $y=0$ to be at the top of the water, then the width across the plate at depth y is $2 \sqrt{16-(10-y)^{2}}$. Thus, the force due to fluid pressure is

$$
F=\int_{6}^{10} 9800 y \cdot 2 \sqrt{16-(10-y)^{2}} d y
$$

If we use a change of variables $u=10-y$, then $d u=-d y$, and the above integral becomes

$$
F=\int_{4}^{0} 9800(10-u) 2 \sqrt{16-u^{2}}(-d u)=2 \cdot 9800 \int_{0}^{4}(10-u) \sqrt{16-u^{2}} d u
$$

(which incidentally, is the integral when you set $y=0$ at the bottom of the gate). Notice that the above integral becomes

$$
196000 \int_{0}^{4} \sqrt{16-u^{2}} d u+9800 \int_{0}^{4} 2 u \sqrt{16-u^{2}} d u
$$

The first integral is recognizable as a quarter circle of radius 4, while the second can be done with substitution. the above integral then becomes

$$
196000 \cdot 4 \pi-\left.9800 \cdot \frac{2}{3}\left(16-u^{2}\right)^{3 / 2}\right|_{0} ^{4}=196000 \cdot 4 \pi-\frac{19600}{3}(64)
$$

